
  1

 

A pedagogy-embedded Computer Algebra System 

as an instigator to learn more Mathematics 
1
 

 

Thierry Dana-Picard and Ivy Kidron 

Department of Applied Mathematics 

Jerusalem College of Technology 

Havaad Haleumi Street, 21 

Jerusalem 91160 – Israel 

Email: dana@jct.ac.il – ivy@jct.ac.il 

 

Abstract: 

The constraints of a Computer Algebra System are generally classified as 

internal constraints, command constraints and organization constraints. 

In fact, a fourth kind of constraints exists, namely motivating constraints. 

These constraints consist in features or commands of the CAS whose 

understanding demands sometimes from the user to acquire more 

mathematical knowledge than what has been taught in a standard course. 

Theorems can appear which necessitate learning beyond the syllabus 

framework. Such "new" theorems appear generally in two situations, 

namely when using a pedagogy-embedded feature of the CAS (either a 

posteriori help, or a priori hints), or when using certain commands and 

trying to analyze the results. We describe a research frame in the first 

year Foundation Courses in Mathematics, in our Engineering College. 

With this research, we wish to understand more deeply the 

instrumentation processes at work with the students and to check 

motivations for a change in the institution's culture.   

 

 I. Levels of intervention of a Computer Algebra System.  
 

As an assistant to mathematical learning, a Computer Algebra System (a 

CAS) offers three levels of help: 

1) a technical tool performing technical tasks; 

2) a tool whose performances help to develop more conceptual 

understanding; 

3) a technological help to bypass a lack of conceptual knowledge, 

where such knowledge is out of reach, at least in ”the next future”. 

 

The first level is the blackbox level and has no great pedagogical value. 

Maybe it allows the teacher to save time for reflexion and theoretical 

understanding, but a perverse effect is the loss of manual computation 
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skills, as noted by (Herget et al., 2000). Integration techniques, 

techniques for solving equations, either linear or non-linear, are abilities 

which could disappear. The following claim has been heard in a 

professional meeting: "nowadays, there are computers who make the 

computations; thus there is no need anymore to teach integration 

techniques". We disagree with this claim, and wish to show that, on the 

contrary, Computer Packages enable to learn and to understand more 

Mathematics than expected. 
 

We can distinguish a level 1½ , where the student uses the CAS for 

verifying results. There are at least two kinds of verifications: 

• Verify either a numerical result or a "closed" algebraic expression. 

The mathematical correctness of the verification is not always 

evident. For example, two different CAS or even two different 

commands of the same CAS, or a CAS and hand-work, can provide 

different algebraic expressions, both valid. As inert expressions, 

they are different, but when defining functions, which are 

dynamical objects, different expressions can define the same 

function. The verification issue has been addressed by Lagrange 

(1999) and Pierce (2001). 

• Perform the passage from n to n+1 in a recurrence, after the CAS 

enabled to conjecture a formula (see (Garry 2003) page 139). 

 

Steiner and Dana-Picard (2004) commented aspects of level 2. Low-level 

commands are important for cognitive processes attempting to afford a 

good conceptual insight. A CAS command is called a low-level command 

if it performs a single operation, while a macro is a command 

programmed to perform a sequence of low-level commands. Low-level 

commands act as the atoms of every computerized process for solving a 

problem. 

Because of syllabus limitations and of time limitations, level 3 is less 

commonly considered. It appears close to the frontier of the syllabus, 

either for exercises aimed to broadening knowledge beyond this frontier, 

or for problem solving when the necessary theorems have not been taught 

and will not been taught "in the next future". Technical use of the CAS 

fills the gap; see (Dana-Picard 2005b). 
 

A fourth level exists: a CAS is a device whose performances may incite 

the user to acquire more mathematical knowledge.  The reason can be one 

of the two following: 

• Multiple commands are available for seemingly the same purpose. 

For the user to make an intelligent decision which command to use, 

he/she must have a good knowledge of the Mathematics 

implemented in the algorithms.  
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• There exist situations where a unique algorithm is available, either 

because of the theoretical state-of-the-art or because of the 

decisions of the developers. This limits the diversity offered by the 

CAS; this issue is studied by Artigue (2002), page 265. In such a 

case, the theorem transformed either into an algorithm or into a 

command is not always a standard theorem taught in a standard 

course; see the example with Derive in section II. 
 

In every case, the implemented Mathematics has to be understood. In 

order to afford a real understanding of the process, the user has to learn 

new Mathematics. We called this occurrence a motivating constraint of 

the software (Dana-Picard 2006). 
  

Generally, the word constraint evokes a limitation, an impossibility to go 

beyond a certain borderline. For a software package, this can be a 

limitation on the size of numbers, on the number of successive 

parentheses, etc. Among the most documented internal constraints are the 

finiteness of the screen for graphical applications, and the fact that the 

real numbers are always approximated by rational numbers. Following 

Balacheff (1994), Guin and Trouche (1999) distinguish three types of 

constraints of the artifact, called respectively internal constraints (linked 

to hardware), command constraints (linked to the existence and syntax of 

the commands), and organization constraints (linked to the interface 

artifact-user).  
 

The constraint that we meet here is of a totally different nature: instead of 

limiting the user within the borders of a certain topic, the CAS demands 

from the user to go further, to learn a new theorem, a new technique. It is 

a motivating constraint, which leads to a broadening of the student's 

mathematical landscape. After its apparition, the mathematical 

knowledge is not supposed to be only shown anymore, the student is 

incited to learn the new theorem, and then becomes able to manipulate 

this knowledge, either with or without the help of the technology.   

 

II. Pedagogy-embedded CAS. 
 

Until recent times, the CAS did not give hints in order to find a pathway 

towards the solution of the given problem. This is not true anymore: 

pedagogical features have been implemented into Computer Algebra 

Systems. We call such systems pedagogy embedded CAS. 

 

Derive 6 has a step-by-step feature, well developed for Calculus 

commands. Every step corresponds to one low-level command, as it 

implements one single theorem such as an integration formula. There 

exist surprising situations, e.g. the following formula is a central item: 
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is a non-negative real parameter. For p=0,1,2, the computation is 

straightforward, but for larger integer values and for non integer values of 

the parameter, the work is non-illuminating. For given a, and for p=1/3, 

other CAS, where this formula seem not to be implemented, cannot 

generally compute the integral in a reasonable amount of time. Knowing 

the formula (*) enables to compute the integral with paper and pencil, 
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Formula (*) is not trivial; it is commented, and examples are given, in 

(Dana-Picard 2005b). An experienced lecturer, working in another 

institution, told to one of the authors: "I would not dare to ask my 

students to know such a theorem".  We think that this implementation is a 

good opportunity to teach the theorem and some of its applications. As A. 

Rich says: “The transformation rules Derive displays are those it uses to 

simplify an expression. They may or may not be the same as those 

currently taught to students. However, if teachers see an advantage to an 

unfamiliar rule used by Derive, they may want to ask their students to 

verify the validity of the rule and then the students will have an additional 

tool in their arsenal” (Böhm et al., 2005, page 36).  
 

This parametric integral has been proposed to an average student, named 

Ori, during the preparation to an oral examination. At first glance, as he 

thought that the parameter is a non negative integer, he proposed to 

decompose the integrand into a sum of partial fractions. The tutor showed 

him the Derive's step-by-step-solution. 
Tutor: Do you recognize a known formula? 

Ori shows Formula (*), then says: No, actually we have not been taught this. 

Tutor: Can you apply the formula? 

Ori: Yes. (works for a while); oh, I never saw this, you must teach this! 
 

During another session, Ori is proposed the integral ∫ −+
=

4

0 4
dx

xx

x
I . He says: 

this is the same case I saw last time; let us apply the formula. 
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Finally, at the end of the same tutorial session, he "receives" the following integral: 
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Ori: It's not a power, but it must work the same way, as it's the same structure.  

Tutor: And what about  ∫ +
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Ori: Surely the same thing. 

He makes the work and claims: Oh yes! You must teach this in classroom!" 

 

Maybe that without the step-by-step, the user would not have 

discovered the formula. Therefore, we consider this feature as part of the 

software's motivating constraints. 
 

Maple is pedagogy embedded (via the Student package); here the 

conception is different from Derive's step-by-step philosophy, and the 

learning process induced by them develops otherwise. We present here an 

example in a different context. 

Consider the following initial value problem: 






=

=−

1)0(y

xxy
dx

dy

. Working with 

paper and pencil, a student is generally taught to use an integrating factor.  

 

When using Maple's assistant for Ordinary Differential Equations, the 

student can choose the method: Lie methods, Classification methods, etc., 

but the usage of an integrating factor is not available for this exercise. A 

noticeable fact is that the pressing a button is accompanied by the 

(optional) translation of the command in Maple's language. The option 

"Laplace Transforms" leads to a much more complicated form. Therefore 

the student is incited to learn what these methods are, how they work and 

which benefit he/she can afford from their usage instead of what has been 

taught in regular class.  

Tools shape the learning environment (Trouche 2004b), and the last 

influences the mathematical contents. The two embeddings of 

pedagogical features that we saw above, and the learning processes 

spanned by them are different. Note that each kind of software follows 

general algorithms, starting from pattern recognition, and whose 

sequential steps are based on the implementation of general theorems. 

The human brain works less sequentially, therefore intuition can lead to 

other pathways towards the solution of the exercise. With the integral of 

section II, we presented earlier an example of such a situation. This does 

not mean that technology has not been programmed properly: a proper 

usage of technology does not require from the technology to mimic 

human actions.  
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Let us compare briefly the two ways. On the one hand, Derive's step-by-

step feature gives an indication on how the software works; if the student 

did not know how to solve the exercise, he/she has now an opportunity to 

understand by some kind of "post-mortem" analysis. Maybe an unknown 

theorem appears, as in our example, and the student can wish not only to 

discover it and to use it afterwards, but to try to have a more profound 

insight in its proof and its mathematical meaning. On the other hand, 

Maple's assistant lets some freedom of choice to the student, by offering 

different options before the computation is performed. This is still more 

evident when using the tutor for computing integrals. In this case, all the 

rules are presented as "buttons"; after a button has been pressed, an 

immediate indication is given whether the rule can be applied or not. If 

not, the student is invited to choose another rule, and so on.    
 

Finally, we wish to note that even without a specific pedagogical 

feature, a CAS can be an instigator to further mathematical learning. This 

is the case in (Kidron 2003) for the conceptual understanding of the limit 

notion in the derivative, and deep learning of the theory is motivated by 

the usage of Mathematica. 

 

III Instrumentation. 
 

At the beginning, we saw Derive’s step-by-step as providing the student 

with “a posteriori assistance”, in order to understand what he/she would 

have been required to do. Actually, the usage of the step-by-step feature 

of the software can be considered as an “a priori” usage, in one of the 

following fashions:  

• The user can discover a way of solving the problem either different 

from his/her way; 

•  Suppose that the student did not find how to solve the problem; 

he/she can ask for the first step (pressing the appropriate button) 

and the CAS opens a pathway. At every step, the student can 

abandon the step-by-step session. This is based on general 

theorems that the student does not automatically know.  
 

When such a situation occurs in classroom, the teacher can build various 

activities, enriching by a large amount the mathematical knowledge and 

culture of the learners.  If at the beginning, the student influenced the 

software’s behavior in order to obtain the needed result, in the second 

scenario the software forces the educator to teach and the student to learn 

a new topic, a new theorem.  

We have here elements of an instrumentation process (Chevallard 1992, 

Lagrange 2000, Artigue 2003 page 250, Trouche 2004a): “Les 
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potentialités et les affordances d’un artefact (en occurrence le CAS) 

favorisent le développement de nouveaux schèmes (ou font évoluer les 

schèmes antérieurs) de résolution d’un type de tâches (ici le calcul d’une 

intégrale définie)” (Trouche 2005; private e-mail).  More briefly: 

“Instrumentation is precisely this part of the process where the artifact 

prints its mark on the subject” (Trouche 2004b, page  290).  

Of course, this process is not reduced to the acquisition and 

internalization of one single theorem; the present examples are only one 

occurrence of the mechanisms involved. 
 

IV. Contribution to the institution’s culture. 
 

We use the word "institution" in the sense of (Artigue 2002). Each 

institution has to decide whether to introduce the usage of a CAS in 

Mathematics courses or not to do so; not to deal with this issue is also a 

kind of decision. For example, the institution named JCT decided to teach 

MatLab and to use it in every engineering cursus.  

Both authors act as coordinators of first year Foundation Courses in 

Mathematics, i.e. courses in which all Engineering students at JCT are 

involved. In a small subset of classes, which can also be viewed as an 

institution, the authors adopted other packages; for example, a course in 

Ordinary Differential Equations has been given last year together with 

practice sessions based on the usage of a CAS. The "institution culture" 

has already changed in certain classes, and is susceptible to change the 

institution’s culture in a larger scale (e.g., all the first year Foundation 

Courses in Mathematics at JCT): 

 “Tools are not passive, they are active elements of the culture into 

which they are inserted.”(Noss and Hoyles 1996), page 58). 
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