Monotonous sequences.

Definition 3.5.1   Let $ (u_n)$ be a sequence of real numbers.
  1. The sequence $ (u_n)$ is constant if $ \forall n, \; u_{n+1}=u_n$ .
  2. The sequence $ (u_n)$ increases if $ \forall n, \; u_{n+1} \geq u_n$ .
  3. The sequence $ (u_n)$ decreases if $ \forall n, \; u_{n+1} \leq u_n$ .
  4. The sequence $ (u_n)$ is monotonous if it is either decreasing or increasing.

Example 3.5.2       



Noah Dana-Picard 2007-12-28