next up previous contents
Next: Double integrals in polar Up: Double integrals. Previous: Double integrals over a

Applications: areas, moments, center of mass in the plane.

Consider the domain $\mathcal{R}$ in the plane as a thin plate; if we know at each point what is the density of the material used to build this plate, we can compute the mass, the moments of this object about the coordinate axes, the center of mass of the object, and so on. We denote by $\delta (x,y)$ the density at the point (x,y).


\begin{displaymath}M= \int \int_{\mathcal{R}} \delta (x,y) \; dA.

First moments:
\begin{align*}M_{x} & = \int \int_{\mathcal{R}} y \delta (x,y) \; dA\\
M_{y} & = \int \int_{\mathcal{R}} x \delta (x,y) \; dA
Coordinates of the center of mass:

\begin{displaymath}\overline{x}=\frac {M_y}{M} \qquad ; \qquad \overline{y}=\frac {M_x}{M}

Moments of inertia:
\begin{align*}I_x &= \int \int_{\mathcal{R}} y^2\delta (x,y) \; dA\\
I_y &= \in...
...I_x + I_y\\
I_L &= \int_{\mathcal{C}} r^2(x,y) \delta (x,y) \; dA
where L is any line in the plane and r is the distance from the point (x,y) to the line L.
Radii of gyration:
\begin{align*}\text{about the $x-$ axis:} & R_x = \sqrt{\frac {I_x}{M}} \\
...I_y}{M}} \\
\text{about the origin:} & R_0= \sqrt{\frac {I_0}{M}}.

Example 7.7  

Noah Dana-Picard