next up previous
Next: About this document ...

Vector fields and ODE.

Thierry Dana-Picard - JCT 5762


Date: February 18, 2002

Figure 1:
\begin{figure}\mbox{
\epsfig{file=ode-1.eps} }
\end{figure}

Figure 1: $ y'(t)=\cos (t-y), \; t \in (- \pi, \pi ), \; y\in (- \pi, \pi ).$

Figure 2:
\begin{figure}\mbox{
\epsfig{file=ode-2.eps} }
\end{figure}

Figure 2: $ y'(t)=e^{t-y}.$

Figure 3:
\begin{figure}\mbox{
\epsfig{file=ode-3.eps} }
\end{figure}

Figure 3: $ y'(t)=x(2-x)$ with initial conditions:

Figure 4:
\begin{figure}\mbox{
\epsfig{file=ode-4.eps} }
\end{figure}

Figure 4: $ x'(t)=\frac {t+x}{t-x}$.

Figure 5:
\begin{figure}\mbox{
\epsfig{file=ode-4b.eps} }
\end{figure}

Figure 5: $ x'(t)=\frac {t+x}{t-x}$ and $ x(0)=1$.

Figure 6:
\begin{figure}\mbox{
\epsfig{file=ode-4c.eps} }
\end{figure}

Figure 6: $ x'(t)=\frac {t+x}{t-x}$ and $ x(1)=2$.





root 2002-02-18